Attentive processing improves object recognition
نویسندگان
چکیده
The human visual system can recognize several thousand object categories irrespective of their position and size. This combination of selectivity and invariance is built up gradually across several stages of visual processing. However, the recognition of multiple objects in cluttered visual scenes presents a difficult problem for human as well as machine vision systems. The human visual system has evolved to perform two stages of visual processing: a pre-attentive parallel processing stage, in which the entire visual field is processed at once and a slow serial attentive processing stage, in which a region of interest in an input image is selected for “specialized” analysis by an attentional spotlight. We argue that this strategy evolved to overcome the limitation of purely feed forward processing in the presence of clutter and crowding. Using a Bayesian model of attention along with a hierarchical model of feed forward recognition on a data set of real world images, we show that this two stage attentive processing can improve recognition in cluttered and crowded conditions.
منابع مشابه
Attentive Object Detection Using an Information Theoretic Saliency Measure
A major goal of selective attention is to focus processing on relevant information to enable rapid and robust task performance. For the example of attentive visual object recognition, we investigate here the impact of top-down information onmulti-stage processing, instead of integrating generic visual feature extraction into object specific interpretation.We discriminate between generic and spe...
متن کاملAn Attentive Machine Interface Using Geo-Contextual Awareness for Mobile Vision Tasks
The presented work settles attention in the architecture of ambient intelligence, in particular, for the application of mobile vision tasks in multimodal interfaces. A major issue for the performance of these services is uncertainty in the visual information which roots in the requirement to index into a huge amount of reference images. We propose a system implementation – the Attentive Machine...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملHierarchical Attentive Recurrent Tracking
Class-agnostic object tracking is particularly difficult in cluttered environments as target specific discriminative models cannot be learned a priori. Inspired by how the human visual cortex employs spatial attention and separate “where” and “what” processing pathways to actively suppress irrelevant visual features, this work develops a hierarchical attentive recurrent model for single object ...
متن کاملTwo Speed Factors of Visual Recognition Independently Correlated with Fluid Intelligence
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009